CLASSES: S4 MCB,MPC,MEG,MCE,PCM

- 1. What do you understand from?
- a) logic, b) trigonometry, c) binary operation, d) absolute value of a number? (6 marks)
- 2. Determine which of the pairs of the following are logically equivalent

$$i. (P \leftrightarrow q) and (p \rightarrow q) \cap (q \rightarrow p)$$
(4marks)

$$ii. p \cup (q \cap r) and (p \cup q) \cap (p \cup r)$$
(4marks)

3. i) By the table establish two Morgan's lawsii) Precise whether the proposition is a tautology or contradiction

$$[(-p)\land (q\land r)]\land (-q) \tag{4marks}$$

4. Given the propositional function p(x): x + 3 > -2. Determine the values and the truth value for the following a)p(8) b)p(2) $c) p(8) \wedge [\sim p(2)]$ (5marks)

b) Prove that conjunction distributes over disjunction

5. Demonstrate the following trigonometric identities

a)
$$\frac{1+\sin x}{1-\sin x} + \frac{\sin x-1}{1+\sin x} = 4\sec x \tan x$$
 b) $\frac{1+\cos^2 x}{\sin^2 x} = 2\csc^2 x - 1$ (7marks)

c. Prove the trigonometric identity: $\sqrt{(3\cos y + 4\sin y)^2 + (4\cos y - 3\sin y)^2} = 5$

6. a) Convert 81°13′08″ to decimal degree

b) Convert 117.6572 to degree minutes second system (3marks) $1 - \pi$

c) Given that $\sin x = \frac{1}{6}$ and $\frac{\pi}{2} < x < \pi$. Find $\cos x$ and the other trigonometric ratios (6 marks) 7. Solve and write down the set of solutions

7. Solve and write down the set of solutions

i)
$$4(5x + 10) = 6|2x - 3|$$
 ii) $|2(5 - x)| \ge 19$ (4 marks)

8. Two cars leave the same station simultaneously, moving along straight trucks that form an angle of 30 degrees. If one car travels at an average speed of 50 km/h and the other at an average of 60 km/h, how far apart are the two cars after two hours? (4marks)

9. Given two binary operations defined by $\forall x, y \in \Re$ $x\Delta y = x + b - 4$ and xTy = 5xy

i) Find the identity element of each of the composition law.	(3marks)
ii) Verify if the law Δ is commutative and associative	(3marks)
iii) Demonstrate that T is distributive according to Δ or not.	(3marks)

10. Two vertical lamp posts of equal height stand on the side of the road way which is 50 m wide .At the point in the road way between the lamp post are 60° and 30° . Find the height of each lamp post and the position at the point. (5marks)

(3marks)

(6marks)

(4marks)

11. Copy and complete the following table.

Angles	Sine	cosine	Tangent	cotangent	Secant	Cosecant
30 degrees						•
$\frac{7\pi}{4}$ rd						

12. a). In the set of real number we define the binary operations * and Δ by $x * y = \frac{x - 3xy + 5}{2}$ and

 $x\Delta y = x^2 + xy + y - 8$. Calculate i) $3 * (1\Delta 0)$ ii) $(3 * 1)\Delta(3 * 0)$ (5 marks)

b) Write down the Cayley table for addition modulo 6 on the set Z_6 and verify if it is a commutative group or Abelian group. (5 marks)

13.A Town B is 13km south and 18km West of town A . Find the bearing and distance of B from A (**3marks**)

14.

. Let * be a binary operation defined on the ring of integers Z by a * b = a + b - 1

- **a**) Calculate (-10)*(-2) (**1 Marks**)
- b) Is the binary operation Associative? Commutative? (3 Marks)
- c) Determine whether there is an identity element? (2 Marks)
- d) Determine whether there is inverse (opposite) (2 Marks)
- e) Conclude on (Z,*) (1 Marks)

END